41 research outputs found

    Wake Structures and Surface Patterns of the DrivAer Notchback Car Model under Side Wind Conditions

    Get PDF
    The flow field topology of passenger cars considerably changes under side wind conditions. This changes the surface pressure, aerodynamic force, and drag and performance of a vehicle. In this study, the flow field of a generic passenger vehicle is investigated based on three different side wind angles. The study aimed to identify vortical structures causing changes in the rear pressure distribution. The notchback section of the DrivAer model is evaluated on a scale of 1:4. The wind tunnel tests are conducted in a closed section with a splitter plate at a Reynolds number of 3 million. The side wind angles are 0∘ , 5∘ , and 10∘ . The three-dimensional and time-averaged flow field downstream direction of the model is captured by a stereoscopic particle image velocimetry system performed at several measurement planes. These flow field data are complemented by surface flow visualizations performed on the entire model. The combined approaches provide a comprehensive insight into the flow field at the frontal and side wind inflows. The flow without side wind is almost symmetrical. Longitudinal vortices are evident along the downstream direction of the A-pillar, the C-pillars, the middle part of the rear window, and the base surface. In addition, there is a ring vortex downstream of the vehicle base. The side wind completely changes the flow field. The asymmetric topology is dominated by the windward C-pillar vortex, the leeward A-pillar vortex, and other base vortices. Based on the location of the vortices and the pressure distributions measured in earlier studies, it can be concluded that the vortices identified in the wake are responsible for the local minima of pressure, increasing the vehicle drag

    Euromech Colloquium 509: Vehicle Aerodynamics. External Aerodynamics of Railway Vehicles, Trucks, Buses and Cars - Proceedings

    Get PDF
    During the 509th Colloquium of the Euromech society, held from March 24th & 25th at TU Berlin, fifty leading researchers from all over europe discussed various topics affecting both road vehicle as well as railway vehicle aerodynamics, especially drag reduction (with road vehicles), cross wind stability (with trains) and wake analysis (with both). With the increasing service speed of modern high-speed railway traffic, aerodynamic aspects are gaining importance. The aerodynamic research topics comprise both pure performance improvements, such as the continuous lowering of aerodynamic drag for energy efficiency, as well as safety relevant topics, such as cross-wind stability. The latter topic was most recently brought to attention when a swiss narrow-gauge train overturned during the severe storm Kyrill in january 2007. The shape of the train head usually has largest influence on cross wind stability. Slipstream effects of passing trains cause aerodynamic loads on objects and passengers waiting at platforms. The strength of the slipstream is determined by both the boundary layer development along the length of the train and the wake developing behind the tail of the train. Since high-speed trains can be considered to be as smooth as technically possible, attention is drawn to the wake region. The wake of the train again is also one important factor for the total drag of a train. Due to the fact that trains are bidirectional, optimisation of the leading car of a train with respect to drag and cross wind performance while simultaneously minimising the wake of the train for drag and slipstream performance is a great challenge. Modern optimisation tools are used to aid this multi-parameter multi-constraint design optimisation in conjunction with both CFD and wind tunnel investigations. Since many of the aerodynamic effects in the railway sector are of similar importance to road vehicles, the aim of the colloquium is to bridge the application of shape optimisation principles between rail- and road vehicles. Particular topics to be addressed in the colloquium are: Drag, Energy consumption and emissions: Due to increase in energy cost, drag reduction has gained focus in the past years and attention will grow in the future. Pressure induced drag is of common importance for both rail- and road vehicles. The optimisation of head- and tail shape for road vehicles as well as for bi-directional vehicles (trains) is in the focus. Interference drag between adjacent components shall also be treated. Slipstream Effects: Are a safety issue for high-train operation (Prams sucked into track due to train-induced draught flows) when trains passing platforms at high speeds. For Road vehicles, the ride stability of overtaking cars is influenced by the wake of the leading trucks and busses. Common interest is the minimisation of wake effects for both rail and road vehicles. Cross-Wind Safety, Ride stability under strong winds: Both are safety issues for rail- and road vehicles. Aerodynamic forces shall be minimised (roll moment for trains and also yaw moment for road vehicles). Strategies for Vehicle shape optimisation (head, tail and roof shape) in order to minimise aerodynamic moments. Possibilities of Flow control. Optimisation strategies: Parametrisation, analyses (CFD), Optimisation tools and methods, Application to Drag, Cross-Wind, Ride stability and Snow issue

    Phase-Averaging Methods for the Natural Flowfield of a Fluidic Oscillator

    Get PDF
    The presented study examines various methods for phase averaging the naturally oscillating flowfield of a scaled-up fluidic oscillator. No external trigger is employed to control the oscillation of the flow. Mathematical and signal conditioning approaches for phase averaging the data are categorized and described. The results of these methods are evaluated for their accuracy in capturing the natural flowfield. The respective criteria are based on the minimum fluctuation in oscillation period length, the conservation of velocity amplitudes, and the number of snapshots per phase-averaging window. Although all methods produce reasonable qualitative results, only two methods are identified to provide the desired quantitative accuracy and suitability for the investigated flowfield. The first method is based on conditioning a time-resolved pressure signal from the feedback channels in the oscillator. An autocorrelation applied to the reference signal improves the period identification. The second method employs a mathematical approach by means of proper orthogonal decomposition. Because the conventional use of proper orthogonal decomposition reveals shortcomings in quantitative accuracy, it is modified by imposing an even distribution of snapshots per phase angle window. The results demonstrate the feasibility and improved accuracy of the modified proper orthogonal decomposition. Therefore, accurate phase averaging can be conducted without the need for a time-resolved reference signal

    Experimental Three-Dimensional Velocity Data of a Sweeping Jet from a Fluidic Oscillator Interacting with a Crossflow

    Get PDF
    The dataset contains three-dimensional, quasi time-resolved velocity fields of the complex flow field that is caused by a sweeping jet from a fluidic oscillator interacting with an attached turbulent crossflow. The data is acquired experimentally at the Technische Universität Berlin by employing a traversable stereoscopic particle image velocimetry system. The presented data served as the basis for several publications. Detailed information on the scientific background, the associated publications, the experimental setup, the structure of the data, and some first steps for importing the data are provided along with the uploaded data. The dataset is published in order to allow other researchers easy access. Therefore, it may serve as a basis for future projects and as a dataset for the validation of numerical studies or visualization techniquesDFG, 289230680, Die Interaktion zwischen einem räumlich oszillierenden Strahl und einer Querströmun

    Properties of a sweeping jet emitted from a fluidic oscillator

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.This experimental study investigates the flow field and properties of a sweeping jet emitted from a fluidic oscillator into a quiescent environment. The aspect ratio of the outlet throat is 1. Stereoscopic particle image velocimetry is employed to measure the velocity field plane-by-plane. Simultaneously acquired pressure measurements provide a reference for phase correlating the individual planes yielding three-dimensional, time-resolved velocity information. Lagrangian and Eulerian visualization techniques illustrate the phase-averaged flow field. Circular head vortices, similar to the starting vortex of a steady jet, are formed repetitively when the jet is at its maximum deflection. The quantitative jet properties are determined from instantaneous velocity data using a cylindrical coordinate system that takes into account the changing deflection angle of the jet. The jet properties vary throughout the oscillation cycle. The maximum jet velocity decays much faster than that of a comparable steady jet indicating a higher momentum transfer to the environment. The entrainment rate of the spatially oscillating jet is larger than for a steady jet by a factor of 4. Most of the mass flow is entrained from the direction normal to the oscillation plane, which is accompanied by a significant increase in jet depth compared to a steady jet. The high entrainment rate results from the enlarged contact area between jet and ambient fluid due to the spatial oscillation. The jet’s total force exceeds that of an idealized steady jet by up to 30 %. The results are independent of the investigated oscillation frequencies in the range from 5 to 20 Hz

    The time-resolved natural flow field of a fluidic oscillator

    Get PDF
    The internal and external flow field of a fluidic oscillator with two feedback channels are examined experimentally within the incompressible flow regime. A scaled-up device with a square outlet nozzle is supplied with pressurized air and emits a spatially oscillating jet into quiescent environment. Time-resolved information are obtained by phase-averaging pressure and PIV data based on an internal reference signal. The temporal resolution is better than a phase angle of 3°. A detailed analysis of the internal dynamics reveals that the oscillation mechanism is based on fluid feeding into a separation bubble between the jet and mixing chamber wall which pushes the jet to the opposite side. The total volume of fluid transported through one feedback channel during one oscillation cycle matches the total growth of the separation bubble from its initial size to its maximum extent. Although the oscillation frequency increases linearly with supply rate, sudden changes in the internal dynamics are observed. These changes are caused by a growth in reversed flow through the feedback channels. The time-resolved properties of the emitted jet such as instantaneous jet width and exit velocity are found to oscillate substantially during one oscillation cycle. Furthermore, the results infer that the jet’s oscillation pattern is approximately sinusoidal with comparable residence and switching times

    Experimental Three-Dimensional Velocity Data of a Sweeping Jet from a Fluidic Oscillator

    Get PDF
    The dataset contains three-dimensional, quasi time-resolved velocity field of a sweeping jet from a fluidic oscillator. The data is acquired experimentally at the Technische Universität Berlin by employing a traversable stereoscopic particle image velocimetry system. The presented data served as the basis for several publications. Detailed information on the scientific background, the associated publications, the experimental setup, the structure of the data, and some first steps for importing the data are provided along with the uploaded data. The dataset is published in order to allow other researchers easy access. Therefore, it may serve as a basis for future projects and as a dataset for the validation of numerical studies or visualization techniques.DFG, 289230680, Die Interaktion zwischen einem räumlich oszillierenden Strahl und einer Querströmun

    On the influence of Reynolds number and ground conditions on the scaling of the aerodynamic drag of trains

    Get PDF
    The present study examines the possibilities of transferring drag measurement results on reduced-scale train models to the respective full-scale vehicle. A comprehensive experimental and numerical study of the boundary layer and skin friction along trains is performed, focusing on Reynolds number effects. The data are supplemented by an extensive literature study and compared with different approaches from flat plate theory. Good agreement can be found when using the appropriate empiric coefficients and boundary conditions. Simultaneously, the difficulties in determining the skin friction drag of trains due to three-dimensional effects and surface roughness become apparent. The ground simulation analysis, including the effects of ground roughness due to ballast and sleepers, reveals a significant effect of the ground conditions on the vehicle’s aerodynamic drag. Additionally, the effects of elements mounted on the train roof are investigated for different upstream flow conditions. Finally, a scaling method is proposed to transfer drag results from model-scale to full-scale trains based on the findings

    Analysis of moving model experiments in a towing tank for aerodynamic drag measurement of high-speed trains

    Get PDF
    The present study assesses the applicability of towing tank experiments using a moving model for the investigation of the aerodynamics of long land-borne heavy vehicles such as buses, trucks, and trains. Based on experiments with a 1:22 scaled model of a high-speed train, the influence of various conditions relevant for the transferability of the results obtained in water to air is analysed exemplarily. These conditions include surface waves, cavitation and submergence depth. The experiments were carried out in the shallow water towing tank of the Technische Universität Berlin. It is shown that outside a critical Froude number range of about 0.2 < Fr < 1.2 the impact of the surface waves can be neglected and no cavitation appears in the velocity range investigated. Furthermore, a correction method is proposed taking into account the bias through surface waves at small submergence and thus allowing for a wider Froude number range. The data obtained in the towing tank are found to be in excellent agreement to other investigation methods

    Airfoil in a high amplitude oscillating stream

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.A combined theoretical and experimental investigation was carried out with the objective of evaluating theoretical predictions relating to a two-dimensional airfoil subjected to high amplitude harmonic oscillation of the free stream at constant angle of attack. Current theoretical approaches were reviewed and extended for the purposes of quantifying the bound, unsteady vortex sheet strength along the airfoil chord. This resulted in a closed form solution that is valid for arbitrary reduced frequencies and amplitudes. In the experiments, the bound, unsteady vortex strength of a symmetric 18 % thick airfoil at low angles of attack was measured in a dedicated unsteady wind tunnel at maximum reduced frequencies of 0.1 and at velocity oscillations less than or equal to 50 %. With the boundary layer tripped near the leading edge and mid-chord, the phase and amplitude variations of the lift coefficient corresponded reasonably well with the theory. Near the maximum lift coefficient overshoot, the data exhibited an additional high-frequency oscillation. Comparisons of the measured and predicted vortex sheet indicated the existence of a recirculation bubble upstream of the trailing edge which sheds into the wake and modifies the Kutta condition. Without boundary layer tripping, a mid-chord bubble is present that strengthens during flow deceleration and its shedding produces a dramatically different effect. Instead of a lift coefficient overshoot, as per the theory, the data exhibit a significant undershoot. This undershoot is also accompanied by high-frequency oscillations that are characterized by the bubble shedding. In summary, the location of bubble and its subsequent shedding play decisive roles in the resulting temporal aerodynamic loads
    corecore